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a symmetric matrix. 
We see that the plastic deformation process is performed without a change in volume or 

A, = det A, = I. 
Indeed, by definition 

Ap'= A&&= ApAbijAi;(= ApA,A,*: up = - A$;'.: 9 

The condition Ap' = 0 is equivalent to the requirement of satisfying the continuity 
equation /l/, as is hence seen. 

Now, when the equivalence of the equations obtained to the system of equations in /l/ is 
established, the results of 16, 7/ can be used for their closure , where semi-empiricalequations 
of state and interpolation formulas of the kinetics of plastic deformation for a number of 
metals are presented. 

The authors are grateful to G.I. Kanel' for drawing their attention to this problem. 
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ASYMPTOTIC SOLUTION OF A QUASISTATIC THERMOELASTICITY PROBLEM 
FOR A SLENDER ROD* 

V.F. BUTUZOV and T.A. URAZGIL'DINA 

An asymptotic expansion is constructed for solving a quasistatic thermo- 
elasticity problem for a slender cylindrical rod in the presence of mass 
forces and non-linear heat sources. The algorithm for constructing the 
asymptotic form, based on the method of boundary functions, is fairly 
simple and convenient for carrying out numerical calculations. A 
deduction is made on the basis of the asymptotic form constructed on how 
to select correctly a simplified one-dimensional model so as to obtain 
a better approximation for the solution of the initial two-dimensional 
problem. An existence theorem for the solution is proved under certain 
conditions. 

1. Formulation of the problem. In the linear approximation the system of thermo- 
elasticity equations for the displacement vector u@,y,z,t) and temperature EJ (X,&a,@ in a 
certain domain G has the form fl/ 

PAu f (h + ~~)grad div u + X = p grad 0 + p,,u" 
Atl --x-W - q div u' = -x-~H 

(1.1) 

*Prikl.Matem.Mekhan.,51,6,989-999,1987 
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y = (3” + 24 a, x = h,ic, ‘1 = y <0>& 

The dot here denotes the partial derivatives with respect to time, p,h are the elastic 
moduli (quantities characterizing the elastic properties of the materials under small strains), 

x (5, y, 2, 4 is the mass force vector in the domain, a is the coefficient of linear thermal 
expansion, po(.r, y, z) is the volume density in the domain G,h 0 is the thermal conductivity, 
e is the specific heat under constant strain, <@> is the mean body temperature, and H(B, 
x, Y,Z, t) are thermal sources in the domain. System (1.1) is written under the following 
assumptions: the change in e is small, and does not result in changes in the thermal and 
elastic constants, and the relationships between the displacements and strains are linear. 

We consider a thermoelasticity boundary value problem for a slender rod of radius &b and 
length a(e>Q is a small parameter). To do this we will change to cylindrical coordinates 

P* 99 2 and we will seek the axisymmetric solution, i.e., independent of rp. Then system 
(1.1) will take the form 

where vfP,z, t) and w(P,z,t) are the radial and axial displacements, and F(P,z,t) and f&z, 
t) are the radial and axial components of the vector X(P,z,t). 

We impose the following additional conditions. 
On the side surface of the rod 

The first condition shows that with the passage of time, points of the rod side surface 
will undergo Small radial displacements in conformity with the function ST@, t, e),inparticular 
rigidly clamped if qi(z, b,s)= 0. The second condition means that the layers abutting the side 
surface are homogeneous in the radial direction. And, finally the third condition shows that 
weak heat transfer (of the order of c) to the environment occurs according to Newton's law 
on the rod side surface. 

At the ends of the rod 

The mixed-type conditions indicate the absence of shear stresses, and the remaining con- 
ditions yield changes in the axial displacements and temperatures at the ends of the rod with 
time. 

The initial condition for the temperature is 

t = 0, e = X. (p, 2) 
It should also be necessary to give initial conditions for v and w for system (1.2). But 

we shall later examine a shortened system. It is known /l/ that if the mass forces, surface 
forces, and thermal sources vary slowly with time, then the components pod', PO"" in system 
(1.2) can be neglected and the so-called quasistatic thermoelasticity problem can be solved, 
We shall indeed consider just such a problem. We take into account here that the ratio y!(h + 
2~) is of the order of 10-6-10-6K-i f or a broad class of substances and we set y = ep. 

Let us make the change of variable p = er. Then the problem for y = (u, m.6) takes the 
form of a singularly perturbed problem in the variables r, 2, t (the small parameter E enters 
as a factor in the derivatives) 
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L,y=_L,e+e”$ e%-‘8’ - “1) -+- -g- (rv’) - ey -g = 
- &-vi 

,&=$-&r$-; (r,z, t)EG= 

(O<r<b, O<z<a,O<t<T) 

r=b, v=ecp(z, t,e), $=O, $J- -i- A&l = 0 

z=o, -$- +e+-==O, w=*l(r, t, e), O==pLl(r, tl F) 

.z=a, g+e+ 0, w= $2 (r, t, e). 8 = F”.z (TV t, e) 

t = 0, fl = x (r, 2, ef 

(1.4) 

(We consider the dependence of the functions 91, pi (i= 1, 2), x, F, f, I!! on r and e in the 
boundary and initial conditions and the inhomogeneities of the equations and not on IT. as is 
obtained after the substitution p = er.) 

Note that the stationary thermoelasticity problem (the term 8' is also discarded) for 
a slender rod with other boundary conditions was considered in /2/' in the case x %a 0, H ES 0. 

The purpose of this paper is to construct an asymptotic solution of problem (1.3) and 
(1.4) under the following requirements. 

lo. All the known functions in (1.3) and (1.4) are sufficiently smooth. 
2O. Conditions for matching the boundary values for v andw andalsotheinitial andboundary 

values for B are satisfied: 

wi @, t, 8) =o, acp (0, 6 8) 
ar al= 

am (a, 1, 8) __. 
az 

f-h (r, 0, 4 = x (r, 0,4 ps fr, 0, 8) = x o‘, f4 4 
ap, fb, 1. 8) 

a? 
o ax(b.hEf __. = , ar 

) is.=&2 

w$ co* f. 81 +, (0, t, G 
ar 

= axfola.e) .-0, iEi,2 
ar = ar 

3O. The last requirement is the necessary condition for a smooth axisymmetric solution 
to exist. 

The remaining requirements will be imposed during the construction of the asymptotic 
solution. 

2. An algorithm for constructing the asyxnpotic form. We will seektheasymptotic 
form for the solution of problem (1.3) and (1.4) in a form characteristic for the method of 
boundary functions (BF) /3/ 

y (r, 2, t, e)= g (r, 2, t, e) + Qy (r, E, t, e) f 
Q*Y (r, %*, t, e) -I- IIy (r, 2, 7, e) + Py (r, E, zI $1 -t- 

P*y (r, Eer T, e) = 2 er (h (r, z, t) + QIY (r, %- t) + 

Q1*y (rr F*, t) + I’$;, z, 7) + P,Y (r, E, 4 + Pi% (r, %*. Q: 
g=+, E*=y., x=4 e= 

(2.0 

Here ij is the regular part of the asymptotic form, Qy,. ..,P*y axe boundary functions 
whose purpose is described below, and &,%,,z are boundary layer variables. 

Substituting (2.1) into (1.3) and using the representation /4/ H =H +QH -!-Q*H+IIH $- 
PH + P*H, ‘we obtain an equation for the terms of the asymptotic form by a standard 
method (series expansions in powers of 8). The functions F, f, rp,ql, pi (i = 1, 2),x are also 
represented in the form of series in powers of e, for instance 

F (r, 2, t, e) = jj 8’FI {r, 2, t) 

2.1. The regular part of the asymptotic form. For i?, (r,z, t) we obtain the problem 

Loao - r+iiO = 0; r = b, ii, = 0 

whose solution, bounded in Z: is zi, = 0. 
The function iii, (r,z,t) is determined from the system 

LoGo = 0; r = b, &Z,l& = 0 (2.2) 
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Its solution is an arbitrary function of the variables z, t:E, = go(z,t). For @, (r, z, t) 
we obtain a problem analogous to (2.2). Consequently, 6, = a,(z,t) is an arbitrary function 
of z and t. 

Therefore, problem (1.3) and (1.4) refers to the so-called critical cases in the theory 
of singular perturbations: the solution of the degenerate problem (E m= 0) is not determined 
single-valuedly, but depends on arbitrary functions /5/. (An analogous situation is con- 
sidered in /6/ for the heat conduction equation in a slender rod). 

For c1 (r,z, t) we obtain the problem 

L& - r-"ij, .zzz 0; r = b, i-‘, = 'PO (z, t) (2.3) 

Its solution is ZI = 'po (z, Q/b. The functions Z1 and &: ri;, = gI (z, 1), sI = a, (z, t) (gr and 
a1 are arbitrary functions) are determined in the same way as the functions Go, go. 

For Vi (r, Z, t) for i> 2 we obtain a problem analogous to (2.3) with a non-zero right 
side in the equations. Hence Ui is determined single-valuedly. 

For E, (r,z,t) we also obtain an inhomogeneous problem 

Note that the second derivative of the still unknown function g,(z,t) is in the right- 
hand side of the equation. The general solution of the equation bounded in G is 

where g, is an arbitrary function. This solution satisfies the boundary condition in (2.4) 
only if the equality is satisfied (the solvability condition for (2.4)) 

Condition (2.5) is an equation in the function g,(z, t). The boundary conditions for g, 
will be obtained when the BF is constructed. By virtue of (2.5) 

The function 3, (r, z, 1) is a solution of the problem 

L,e,=-~+x-‘a,.+,,j$rp,‘+~)- 
X-'H,, (aO, r, z, t); r = b, 8,h3r = - AC+ (z, t) 

(2.6) 

Derivatives of the still unknown functions ao(z,t) and g,,(z,t) are on the right-hand 
side of the equation. The solution (2.6) is determined apart from the arbitrary function 

rr, (2, t) 

while for a,(& t) we obtain a parabolic equation 

a,’ - dPa,,/tW = K (aO, Z, t). K (cc,, Z, 1) = 
2 ~Ho+@o, b, i, t) 

(2.7) 

-i;- ar 

from the condition for problem (2.6) to be solvable. 
The initial and boundary conditions for the function CL,, will be obtained below when COP- 

strutting the BF. 
For Vi (r, z, t) and e, (r, z, t) with i 2 3 we have problems analogous to (2.4) and (2.6). 

From the conditions for these problems to be solvable we obtain an equation of the type (2.5) 
for gi-2(z,t) and a linear equation of the type (2.7) for c~_~(.z,t). 

Therefore, the functions zTi are determined uniquely at each step and the functions Ei 
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and I&, apart from the arbitrary functions gi(z,t) and ccl (z,t), for which equations of the 
types (2.5) and (2.7) are obtained from the conditions for the problems to be solvable for 
?l;'i+s and ?i,+, . The terms of the regular part of the asymptotic form will be determined 
uniquely after constructing the BF. 

2.2. The boundary layer in the neighbourhoods of the rod ends. The function Qy (r, E, t, 

e) serves to satisfy a given boundary condition for z=O in combination with the regular 
part of the asymptotic form. Moreover, the function Qy (r,& t,e) should be a BF in the 
variable E, i.e., 

QY (r, f, t, e)+ 0 as E-+ 00 (2.8) 
For QOv (r,& t), QOw (r,E, t) we obtain the problem 

@QP 
(A + 34 &Q,v - r-‘Qtd -t (1 + PI) $$ + P - = 0 at2 

kw?,~+ (a+ 2&g- + @ + P)-&(+& (rQ,,N)-=O 

r = b, Qou = 0, aQ,wlar = 0 
F, = 0, aQ,,wiar + aQ&aS = 0, Qow = Q~,, (r, t) - g, (0, t) 

We note that g,(O,t), the value of the still unknown function g,(z,2) at z=o, occurs 
in the boundary condition. We will seek the solution of this problem in the form 

Qou = %go an th E) JI @,d, Q,y = nso pan (k E) J, @,A 

where Jo and J, are Bessel functions and Y, are the roots of the equation 

J1 (v,b) = 0 (2.9) 
(we number them in increasing order). Thereby QOv and Q,,w satisfy the boundary conditions 
for r=b. Taking account of the known relationships between Jo and J, for q,,,(t,&), p,,,(t,E) 
we obtain the problem 

-0 + 2Y)%a%cVL - v, (A + P)Pon' + pqon' = 0 
-P%z2Pon + (h + 2P)Pm" -t (h + p)YnqOn' = 0 

~7lPm (h 0) = Qcm' (6 OL Pm (t, 0) = Son (t) 

(2.10) 

Qon (h m) = Pm (6 m) = 0 

where the prime denotes the derivative with respect to 5. Its solution has the form 

%n (t, E) = son (t) (+& VA - &+xp(- vJ) 

Pan (t, 5) = Son (f)(* v,S + l)exp(- vnE) 

It is known that vg = 0. Consequently, the equality so0 (4 = 0 should be satisfied 
to satisfy the condition (2.8), which will enable the boundary value of the function g,,(z,t) 
to be found for z = 0 

Thereby the functions Qov and QOw are defined completely and turn out to be ex- 
ponentially decreasing as E+oo. 

The function Q,,O (r,&,t) is a solution of the problem 

LeQoO + aPQ,WW = 0 

r = b, @,Olar = 0; & = 0, Q&3 = h,, (T, t) - a,(O, t) 

where the unknown function a, (0, t) occurs in the boundary condition. We obtain by the method 
of separation of variables 

(I% (r, t) - a0 (0, t)) Jo bd r dr 
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Taking (2.8) into account we arrive at the equation d,,(t) = 0, which enables us to 
determine the boundary value of the function a, (2, t) for z = 0: 

a, (0, t) = $ i plo (r, t) r dr = aa0 (f) 
i 

The function Q&l is thereby defined completely and has, like Q,,v and Qow, an expo- 
nential estimate in the variable 5. We note that the convergence of the series for Qov, 
Qow, Qoe and the possibility of their double term-by-term differentiation follows from 
requirements I"--3". 

We will seek the functions Qrn (r, 6, t) and QN (r, &, 1) for i >1 again in the form 

and 
the 
the 

for qi,,,pin we obtain a problem analogous to (2.10) with non-zero right-hand sides in 
equationsandinhomogeneous boundary conditions for f, =O. By using (2.8) we here find 
boundary values for the functions g* (z, t) at z = 0: gi (0,t) = gf(t). 
For i> 1 the functions Q&J (r,tJ,t) are determined in the same way as Q,,O. We here 

find the boundary values for ai(z, t): ai (0, t) = aiO (t). 
The BF Qr*y (r, &, t) (i = 0, 1, . . .) serve to satisfy the boundary condition for s=O, 

jointly with the regular part of the asymptotic form. They are constructed in the same way 
as Qty(r,E,i) and have an exponential estimate in the boundary layer variable $+. Were the 
boundary values are determined for the functions g, (z, t) and a$ (z, t) for z = a : g, (a, t) = 
gi= @I, ai (a, tf = a** (tf. 

2.3. The functions g, (z, t). Ordinary differential equations of the type (2.5) were 
obtained for g, (z, t) in Sect.2.1, while the boundary values g+ (0, t) = gto (t) and g, (a, t) = 
gi”(t) were determined in Sect.2.2 for the construction of the Q-and Q*-functions. There- 
fore, the functions gj(z,t) are defined uniquely as the solution of equations of the type 
(2.5) with the boundary conditions obtained. 

Parabolic equations of the type (2.7) were obtained for the functions ut (2, t) in Sect. 
2.1. Consequently, for a unique determination of ai it is still required to giveaninitial 
condition in addition to the boundary values found in Sect.2.2. It will be found during the 
construction of the H-,,F- and p*-functions. 

2.4. The boundary layer in the ~e~ghhourh~d of the initial time. The function nyfr, 
2, 'G1 4 serves to satisfy a given initial condition in combination with the regular part of 
the asymptotic form. Moreover, the function ny(r,z,r,e) should be a BF in the variable Z, i.e., 

IQ (r, 2, z, E) * 0 as i t * 00 (2.11) 
For n,v(r,z,'r) and H,w (r,z, 7) we obtain problems analogous to those examined in Sect. 

2.1 for Go and Go. Consequently, S&v = 0, II,w = JX,,(Z,T) is an arbitrary functionofthevariables 
z and T. We find analogously I&u = 0, fI,w = n,(a,r) is an arbitrary function 

For II&3 (r,z,z) we have the problem 

F = b, HioWdr = 0; 7 = 0, II,0 = x0 (r, 2) - a, (2, 0) 

The second derivatives of the as yet unknown function no(z,z) is on the right-hand side 
of the equation, while aO(z,O), the unknown initial value of the function a,(z,t) is in the 
initial condition. We find by separation of variables 

of z and r. 

(2.12) 

(2.13) 

where v, are the roots of (2.9). Taking account of (2.11), we arrive at the equation b,,(z) = 
0. It yields a connection between the as yet unknown functions a, (z, t) and an, (z, t)l& for 
t=o and z = 0: 

(2.14) 
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Using (2.141, we determine b,,(z) completely. But for the final determination of II,8 
the function n,(z,r) must still be found. 

For ILg(r,z,z) we obtain the problem 

(h f 2p) (L,rr,u - ‘-Tip) = (2.15) 

xv~a~)~~(~~~), r = b, n,u = 0 

Its solution is 

The function I&W(r,z, r) is the solution of the problem 

yL,,II,w = -(h -t 2p)&~‘~z*; r = b, c%I,w/& = 0 (2.46) 

We obtain an equation for ar@(z,r) :~~~~i~za = 0 from the condition for problem (2.16) to 
be solvable, consequently &W = n,(z,.r) is an arbitrary function of z and z. 

For &v(r, a, T) for i > 3 we obtain a problem of the type (2.15) which has a unique 
solution. 

For &w (r, a, ‘T) and &_a8 (r, 2, 7) for i > 3 we have problems analogous to (2.16) and 
(2.12). The function II,w is determined, apart from the arbitrary function 711 (z, T), while 
the unknown function dar~,(z,~)/~Yz will occur in the expression for rI,_.#. From the condition 
for the problem for III,w to be solvable we obtain an ordinary differential equation for 

zi_s (zv %) of the form 
ak,ias = &-a (2, z) (2.17) 

where li_% (2,~) is a known function that has an exponential estimate in 7, while for II& 
we find a relationship of the type (2.14) between ai-2 (z, t) and ani_, (x, t)/& from condition 
(2.11) for t=O and r=O. 

Therefore, the n-functions can be determined uniquely only after the functions TE~(Z,T) 
have been found. So far, differential equations of the type (2.17) have been found for them. 
When constructing angular BF the nr(z,'c) will be determined completely. 

2.5. Angular boundary layer. The functions x1(2, r). The functions Pv(r, 5, z, e) and 
pw (r,&qe) aretoeliminateresiduals introducedby the BF &(r,z,r,s)and DW (r, 2, r,e) inthe 
boundary condition at z = 0; the function PB(r, f,%,~)is toeliminateresidualsintroducedby BF 

fI@ (r,z,-c, e) in the boundary condition at 2 = 0 and by the BF Qe(r, g, t, e) intheinitialcondition 
at t=O. Moreover, thep-functions shouldbeBFinthevari.ables 5 and Z, i.e., angular BF: 

J%(r,LT,4+-0 asE+z-+m 

An analogous system is obtained for P*y(r,&,z,&). 
(2.18) 

For Pov(r,E,z) and Pow(r,E,r) we have the same pxoblem as in Sect.2.2 for Q,,v,Q,,w, 
it is just necessary to replace the Last boundary condition by Paw =-3t0 (0,~) and the 
parameter t by z. Solving this problem taking (2.18) into account, we obtain 
and P,v = P,w = 0. 

n, (0, a) = 0 

In the same manner we find x~(u,‘E)=O, Po*u(r,Q,,r)=P~*w(r,E,,zf =O- 
The equation @n,/&s=8 was obtained in Sect.2.4 for r&, (z,z) and now the boundary 

conditions fio(O,r)=n,(a,z)= 0 were determined for the construction of the angular BF. 
The problem for XO obviously has just the trivial solution e, (z, z) = 0. 

The function Ki,w = 0 and l&8 are thereby determined completely, where Ki,,6 has an 
exponential estimate in r (see (2.13)), and we find the initial value for the functions 
a, (z, t): a, (2, 0) = y. (z) 3 a00 (z) from (2.14) . 

Similarly 
$ (z,r) = 0, P,v = P,w = PlfV = Pl*w = 0, a, (z,O) - c+“(Z) 

For P,e(r,f,~) we obtain the problem 

ahe L,P,@+~-$p~~o 

r=b, ahe T=o; E=o, Poe=-~bo,(o) x 

exp (- xv,%) Jo (v,r) 
n4 

Z = 0, P,B==-- ng,d”n(O) srP(-WJO(V) 

By virtue of requirement 2O b,,(O)= do,(O), i.e., the conditions for matchingtheinitial 
and boundary value are satisfied for the function P&.Tbe solution of the problem is found 
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by separation of variables and has an exponential estimate in the variables E, and T. 
For P:u(r, 5, z) and Piw(r,&z) for ia. we obtain a problem with non-zero right-hand 

sides in the equations and inhomogeneous boundary conditions for E=O and i>3. This 
problem can also be solved by separation of variables, The boundary value is here determined 
for mf(2,z) for z = 0. Similarly, we find Pi*u(r, f*, r), Pi*w(r, g*,~) and mf (a,?) for i> 2. 
Then we solve the equation for ni (2,~) 
determine nim and II&) 

with the boundary conditions found and we thereby 
completely, and we also find the initial value for the functions 

Ui (2, t): Ul (2, 0) = Ui@ (2). Let us note that ml, and therefore, also aiw and &e have an 
exponential estimate in the boundary layer variable z since they are solutions of (2.17) with 
the boundary values found that have an exponential estimate in z. 

For Pi9 (r, 5, z) for i 2 1 we obtain a problem with non-zero right-hand side in the 
equations and inhomogeneous boundary condition for r=b for i > 2. The boundary and 
initial conditions are matched for s = 0 and T =O by virtue of requirement 2O. The 
solution of the problem can be found by separation of variables and has an exponential estimate 
in the variables 6 and z. 

The functions PI*0 (r, &,r)(i = 0, 1, . . .) are constructed in an analogous way. 

2.6. The functions at (2, Q- Equations of the type (2.7) were obtained in Sect.2.1 for 
the functions % (z, f) and initial and boundary values were obtained in Sects.2.2 and 2.5 
for the construction of BF. It can be shown that they are matched by virtue of requirement 
2O, i.e., cciO (0) = ~f,(O),a~~(0)= ai, (a). 

We will introduce still another condition. 
4O. Let (2.7) with the additional conditions 

a0 (2. 0) = ccoo (z), a, (0, t) = aa" (% a0 (a, t) = aoa 0) 

have a solution. 
The functions ai(z,t) for i > 1 are later determined successively as solutions of 

linear equations of the type (2.7) with the additional conditions found above. 
Thus, the method described enables us to determine terms of the expansion (2.1) to any 

number n. 

3. Fundamental result. The fundamental result can be formulated as follows. We let 
Y*(r,.r, t, a) denote the n-th partial sum of series (2.1). 

Theorem 1. Under conditions1' -@the function Y, (r, z, t, 8) satisfies system (1.3) and 
the additional conditions (1.41 to an accuracy O(@*l). 

The assertion of the theorem follows directly from the very method of constructing series 
(2.1). 

We note two essential statements associated with the asymptotic form constructed. 
1) Finding terms of the asymptotic form (2.1) reduces to solving simpler problems than 

the initial problem (1.3), (1.4). The regular terms of the asymptotic form were determined 
by using ordinary differential equations of the type (2.3), (2.5) whose solutions are found 
in an elementary way in explicit form, and parabolic equations of the type (2.7). If the 
thermal sources H depend linearly on the temperature, the solution of (2.7) is also found in 
explicit form. Explicit representations in the form of series are found for the BF by separ- 
ation of variables. 

2) In practical computations the original system of equations is replaced by a simpler 
shortened system. which terms of the equations can be discarded? At first glance, it can be 
shown that the derivatives with respect to p can be neglected in the equations for the axial 
displacement w and the temperature 8foraslenderrod with slight heat transfer on its side 
surface and the following shortened equations (the one-dimensional model) can be considered 

However, an asymptotic analysis shows that this is not so. The equationsfortheprincipal 
terms of the asymptotic form go = g,(z,t) and 3, = a,(z, tf have the forms of (2.5) and (2.71, 
i.e., differ from (3.1) by additional components showing the need to take account of the weak 
heat transfer even in the zero approximation (the term -2b-‘Axa, in (2.7)), and small radial 
displacements o-n the side surface (the terms -2b-’ (h + p) (h -I- 2~)~’ &po/& in (2.5) and --2b-1qx’pO’ 
in (2.7)). Therefore, an asymptotic analysis affords the possibility of an exact answer to 
the question of what one-dimensional model is correct. 

4. Theorem of existence..Let US put 
v-= u-- v,,, @, 2, t, 3 - fete (2. 8, 9 - Vncz VA;, f; yleijx 
w- = w - wnra cr. 2, t. 8) - WI (r, t, 8) - wn+z r, , 9 

(a - ~)/a + (9% (rr 2, 8) - W,,, (7, a, t, 8)) z/n) 
Cl- = 0 - en+, (r, 2, t, e) 
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where vs+17 wxep, en+% are partial sums of series (2.1) for v, w, 8, respectively. For b, w- , 

e- we obtain the problem 
L,y- = e*@%-l&-t- m, (r,z, t, e) 
.Q- = e*~#-/az + m, (r, 2, t, e) (4.1) 

L*Y- = h (O-, r, 2, t, e), (r, 2, t) = G (4.2) 
r = b, v- = 0, Ow-/or = 0 
z = 0, adar + ear/a2 = 0, W- = 0 (4.3) 

i = a, a~-Jar -+- eariaz = 0, W- = 0 

r = h, at?-/& + AGO = 0 (en+$) 

z = 0, B- = 0 fe*+sf; z = a, e- = 0 (E?) tw 

f= 0, e- = 0 (E"t9) 

where mi(i= 1.2) are known functions: rni = 0 (e-7 in G. 
We note that the introduction of the functions V-,w-,i?- in exactly the same way as this 

has been done would enable us to obtain homogeneous boundary conditions for UC,W-. 
One more condition is needed to prove the existence of a solution of problem (4.1)-(4.4). 
So. Let m,(O,s,t,e)=O. 
The sufficient condition for So is satisfaction of the following equalities: vi+* ('3 t) = O* 

Fi+r (O,z, f) = 0 for i > IL. 
Let us consider the equation obtained from (4.2) if we replace the terms 

1 1 a 
- q TT (TV’-) - ‘9 =).by {-$&-eB.-+M(r,z,t,e)] ax 

where M is a certain known function. The existence and uniqueness of a solution can be proved 
for this equation with the additional conditions (4.41 (see /6/). We expand this solution 
in series @- =1 Xe,~l,(~,r)eosrrka-'a 

The summation here and below is over n and k between zero and infinity; the quantities 
with subscript nk are functions of t and e and Y, are the roots of (2.9). Let us substitute 
this series into (4.1). The solution of problem (4.11 and (4.3) is sought by separation of 
variation U- = E:u,,,l, (vnr) c0s,&U-*Z 

Z@-= E@&,,(@ Sin i&Z’% W) 

We also expand the functions nl,m, in series 

m, = hnrrJx (“VW-) Co3 nka-‘2, nap = xm&lQ (vg) sin nk&s 

We note that the series for m, converges uniformly in G by virtue of requirement So. 
Substituting these representations into (4.11, we obtain a system of two algebraic 

equations for each pair of coefficients D&m& and by solving it we express ",,lr, U+,E in terms 
of @~~,~~~,~~k. The solution of (4.5) is thereby found. Now it can be seen that 

1 a ma'- 
-en7_F(+)-e$T = -* 8'- + M(r, z, t, E) 

vj,~,kf~~-'~;ml, 
‘+f - E (A+ @r) (v,"+(&&)P) = o(En+*) 

Consequently, as /6/ also, an estimate is obtained for e- 

maxg18-l=O(e"*) 

Analogous estimates follow in an elementary way for ~T,LU‘*. 
Therefore the following is proved. 

Theorem 2. If conditions i"-5" are satisfied, then for sufficiently small B problem (1.3) 
and (1.41 has the solution y(r,~,t,B) for which the series (2.1) is asymptotic in the domain 
3, i.e., maxii[~--YY,i=O(e"+') 
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