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a symmetric matrix,

We see that the plastic deformation process is performed without a change in volume or
Ap = det A, = 1.

Indeed, by definition

By = ApiiBpi =By Apiy Al = B, A A S = — AGL: g

The condition A," =0 is equivalent to the requirement of satisfying the continuity
equation /1/, as is hence seen.

Now, when the equivalence of the equations obtained to the system of equations in /1/ is
established, the results of /6, 7/ can be used for their closure, where semi-empirical equations
of state and interpolation formulas of the kinetics of plastic deformation for a number of
metals are presented.

The authors are grateful to G.I. Kanel' for drawing their attention to this problem.
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ASYMPTOTIC SOLUTION OF A QUASISTATIC THERMOELASTICITY PROBLEM
FOR A SLENDER ROD”

V.F, BUTUZOV and T.A. URAZGIL'DINA

An asymptotic expansion is constructed for solving a quasistatic thermo-
elasticity problem for a slender cylindrical rod in the presence of mass
forces and non-linear heat sources. The algorithm for constructing the
asymptotic form, based on the method of boundary functions, is fairly
simple and convenient for carrying out numerical calculations. A
deduction is made on the basis of the asymptotic form constructed on how
to select correctly a simplified one-dimensional model so as to obtain

a better approximation for the solution of the initial two-dimensional
problem. An existence theorem for the solution is proved under certain
conditions.

1. Formulation of the problem. In the linear approximation the system of thermo-
elasticity equations for the displacement vector uf{sz,y,s,¢ and temperature 68(z,y 2,8 in a
certain domain G has the form /1/

pAu + (A + p) grad divu - X = y grad 8 + pou” (1.1)
A —xM — mdivu = —x"H

*Prikl.Matem.Mekhan.,51,6,989-999,1987
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Y= (B 4+ 2u) a, % = Afe, i =y {B>fh,

The dot here denotes the partial derivatives with respect to time, W, A are the elastic
moduli (quantities characterizing the elastic properties of the materials under small strains),
X (z, ¥y, 3 t) is the mass force vector in the domain, a is the coefficient of linear thermal
expansion, g, {z,y, %} is the volume density in the domain G, %, is the thermal conductivity,
¢ is the specific heat under constant strain, 8> is the mean body temperature, and H (8,
z, ¥, %, t} are thermal sources in the domain. System (1.1) is written under the followihg
assumptions: the change in € is small, and does not result in changes in the thermal and
elastic constants, and the relationships between the displacements and strains are linear.

We consider a thermoelasticity boundary value problem for a slender rod of radius &b and
length a(e>>0 is a small parameter). To do this we will change to cylindrical coordinates
P, ¢, 2 and we will seek the axisymmetric solution, i.e., independent of ¢. Then system
(1.1) will take the form

u(—p— (o5 )+ - 92)4—

4.2)
(K+u)7f—(—:;- ) + 5 )+F~v ki +o”
aa
u(~— W L0) o+ G} Ot W e (e o0+ )+ =
v;—wow
4 9 - -
%—%(p-—f—,‘)—)+-§§—»we — a5 o)+ )= —E

where v{p,z, t} and w(p, s {} are the radial and axial displacements, and F{p, 2, 8 and f(p,z
t) are the radial and axial components of the vector X {p,z, #).

We impose the following additional conditions.

On the side surface of the rod

aw

p==gb, v==€@(z,t, &), ==, —-g-s——}-AaG:O

The first condition shows that with the passage of time, points of the rod side surface
will undergo small radial displacements in conformity with the function s¢ (3, £, &), in particular
rigidly clamped if ¢ {2z, ¢, &) = 0. The second condition means that the layers abutting the side
surface are homogeneous in the radial direction. And, finally the third condition shows that
weak heat transfer (of the order of g} to the environment occurs according to Newton's law
on the rod side surface.

At the ends of the rod

3 &
2= D). %+.éi;_:o we=Py{pgt), O==p,(p, 1)

w [
s=a, o =0 w=y (e t), O=(0, 1)

The mixed-type conditions indicate the absence of shear stresses, and the remaining con-

ditions yield changes in the axial displacements and temperatures at the ends of the rod with
time.

The initial condition for the temperature is
t=10, 6=yx(p, 2

It should also be necessary to give initial conditions for v and w for system (1.2). But
we shall later examine a shortened system. It is known /1/ that if the mass forces, surface
forces, and thermal sources vary slowly with time, then the components pgv ,pe” in system
{1.2) can be neglected and the so-called quasistatic thermoelasticity problem can be solved.
We shall indeed consider just such a problem. We take into account here that the ratio y/(A +
2p) is of the order of 10™%—107° K™ for a broad class of substances and we set 7 = ef.

lLet us make the change of variable p = er.  Then the problem for y = (v, w, §) takes the

form of a singularly perturbed problem in the variables 7,2, ¢t (the small parameter & enters
as a factor in the derivatives)

Liy=(+2m (Lov - —~) +ep 22 ax‘ +e(A -+ ) g a,,,, == {1.3)
g F + 8’6 -—8;—
Ly == pLye + 2 (0 4+ 20) 25 4 6 (b + ) -2 (5 () =— % + %2




763

30 e 1 2 . o’
LsyELoe+ea—§z—-~82xIB-—sn—r—-—gr—(rv)-——ﬁn?=
— e H
1 2 2, _
Li=sgrrgrs huEG=

O<r<b, 0<z2<Ca, 0T

r==>b, v=ep(zt,e) —%:’—:0, -Z—?—-;- Ae?0 =0 (1.4)
z=0, %:—-{-e Z\: =0, w=d:{te), O=p{r 58
z=a, _3!:;+8%$Oa w=1{r 1,8}, B=p,{r. t, ¢

t=0, 0 =y(rze¢

(We consider the dependence of the functions Wy, w(i==4,2), % F, /iy H on r and g in the
boundary and initial conditions and the inhomogeneities of the equations and not on re as is
obtained after the substitution p = er.)

Note that the stationary thermoelasticity problem (the term 0 is also discarded) for
a slender rod with other boundary conditions was considered in /2/ in the case X =0, H=0.

The purpose of this paper is to construct an asymptotic solution of problem (1.3) and
(1.4) under the following requirements.

1°. all the known functions in (1.3) and (1.4) are sufficiently smooth.

2°. conditions for matching the boundary values for v and w and also the initial and boundary
values for 0 are satisfied:

M, (b, ¢, &) =0 990, 1, 8) __ dw{at,®) g
or T 9z - oz -

31 (T‘, 0, 8) =7 (?', Ov 3)0 Wy {ra 0! 3) == A (I‘, ay 8)

(b, h8) o gy(b.tE) .
5 == 0, = =0, i=1,2

8
P, (0, ¢, 8) — g (0, 2, &) _ (028 =0, i=1,2
ar or ar

3%, The last requirement is the necessary condition for a smooth axigsymmetric solution
to exist.

The remaining requirements will be imposed during the construction of the asymptotic
solution.

2. An algorithm for constructing the asympotic form. we will seek the asymptotic
form for the solution of problem (1.3) and (1.4) in a form characteristic for the method of
boundary functions (BF) /3/

yrztey=g{r 2t e)+Qy(r E t e) + .1
FHy(r E*,t,e)-{»IIy(r, Z,T,E)—*—Py(T,E,Tqﬁ)‘*l"

o

Pry(r, Ee T, a)zZa‘ Gz )+ Qu(r & B+
fE=i
O!*y (r! g*! t) + nty (", 2, T) + ply (T, gs T) + Pt*y (r! E*: T));

z &~ 2
b= b= =

Here ¥ is the regular part of the asymptotic form, Qy,..., P*y are boundary functions
whose purpose is described below, and §, E,, v are boundary layer variables.

Substituting (2.1) into (1.3) and using the representation /4/ H = H -+ QH + Q*H -+ IIH +
PH - P*H, we obtain an equation for the terms of the asymptotic form by a standard
method (series expansions in powers of e). The functions F,f, @, ¥, u; (i =1, 2),y are also
represented in the form of series in powers of e, for instance

Firoz, t,e)= D e'Fy{r, 2, 1)

=

2.1. The regular part of the asymptotic form. For ©7,(r,s t) we obtain the problem
Ly — r%5, =0; r = b, Fo=10
whose solution, bounded in G is 7, = 0.
The function W, (r, 2,1} is determined from the system
Loy =0; r=25b, 8w/or=0 {2.2)
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Its solution is an arbitrary function of the variables 2,6 %y = g4 (2, 8. For G,(r, 3, &)
we obtain a problem analogous to (2.2). Conseguently, é,, = a4{2, ¢} is an arbitrary function
of z and t.

Therefore, problem (1.3) and (1.4) refers to the so-called critical cases in the theory
of singular perturbations: the solution of the degenerate problem (e = 0) is not determined
single-valuedly, but depends on arbitrary functions /5/. (An analogous situation is con-
sidered in /6/ for the heat conduction equation in a slender rod).

For 1w, {r,s,t) we obtain the problem

Loy =178, =0, r=b, T =gzl (2.3)

Its solution is 7, = @ (z, {)#/b. The functions #; and 6;: W, = g (5, 8), &, = o, {89 {g and
a; are arbitrary functlons) are determined in the same way as the functions &, 8,.

For 7;(r,z,t) for {>»2 we obtain a problem analogous to (2.3) with a non-zero right
side in the equations. Hence ¥; is determined single-valuedly.

For 1, (r, z,t) we also obtain an inhomogeneous problem

32,
L +"u)—ﬁ — 5=l (2.4)
r=as, awz,/ar == ()

Note that the second derivative of the still unknown function g,(z,f}) 1s in the right-
hand side of the equation. The general solution of the equation bounded in @ is

_ i "
w._,:.zr1 (+2p) ag _._2_(&bi‘.l‘_)_f.‘?_ﬂ.},2_

Wa 0+, ft= (S Sm‘o(m z, ) dn

0 1]

where g is an arbitrary function. This solution satisfies the boundary condition in (2.4)
only if the equality is satisfied (the solvability condition for (2.4))

o _2(Afp) dw N

P Y p iy Ty A PR Y § STy ar (2.5)

Condition (2.5) is an equation in the function gy(z t). The boundary conditions for g,
will be obtained when the BF is constructed. By virtue of (2.5)

_ fe* (b 2
wZ:_f‘L%;:_iv_ﬂ_ - —ft 2 ) b g (2 )

The function 8, (r, s, f} is a solution of the problem

a 2 e 2 . dgn’
Lby=— 35 g+ n (o0 + ) — 2.6)
WH (0, T, 2, t); r=b, 80,/0r = — Acy(z, 1)

Derivatives of the still unknown functions o, (3, f) and g, (s, t) are on the right-hand
side of the equation. The solution (2.6) is determined apart from the arbitrary function
@ (2, 8)

= (241 L b,z 2 o
e,s{_ A%+._..9.«_(Soa;~il} g = By (o 74 30 1) g

r

¢
1 d
Bt = {2 (atty (o0, m, i
0

0

while for a, (3, t) we obtain a parabolic equation

Oy — %0%y/02% == K {0y, 2, £), K {Cig 2, 1) = @7
2 JH. oy, b, 2, ¢ Jg, 24
IRt ) v + ) = S

from the condition for problem (2.6) to be solvable.

The initial and boundary conditions for the function a, will be obtained below when con-
structing the BF.

For @;(r,2, 1) and ©;(r, 3 ¢) with >3 we have problems analogous to ({2.4) and (2.6).
From the conditions for these problems to be solvable we obtain an equation of the type (2.5)
for gi,(z, t) and a linear equation of the type (2.7) for ., (s, 2).

Therefore, the functions 7; are determined uniquely at each step and the functions u;
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and 8,, apart from the arbitrary functions g;(z, t) and (3 f), for which equations of the
types (2.5) and (2.7) are obtained from the conditions for the problems to be solvable for
Wive and EH, . The terms of the regular part of the asymptotic form will be determined
uniquely after constructing the BF.

2.2. The boundary layer in the neighbourhoods of the rod ends. The function Qy(r, &, ¢,

e) serves to satisfy a given boundary condition for z=0 in combination with the regular
part of the asymptotic form. Moreover, the function Qy(r, %, ¢, €) should be a BF in the

variable g, i.e., Qy(r & 1,e)—0 as &— oo 2.8)
For Qg (r, k ¢t), Qow (r, E, t) we obtain the problem
_ 520, 2
(h + 20) (LQu> — 7720u0) + (b + 1) S22 2 g

HLoQuo -+ (A + 21) -T2 4o (A 4 )~ (- (rQ2)) = O

r=2a, Qw =0, Qw/dr =0
= 0, 9Q.w/dr + 8Qw/3E = 0, Quw = P14 (r, 1) — g4 (0, ?)

We note that g¢(0,¢), the value of the still unknown function g, (z, ?) at z =10, occurs
in the boundary condition. We will seek the solution of this problem in the form

Q= EO Qo (8 E) T2 (Vo) Qe = 20 Dor (. E) T, (Vo?)

where J, and J; are Bessel functions and v, are the roots of the equation
Jy (vab) = 0 (2.9)
(we number them in increasing order). Thereby Q¢w and Q.w satisfy the boundary conditions

for r=1>b Taking account of the known relationships between J, and J, for g, (¢, &), pen (¢, £)
we obtain the problem

=+ 20)va®qon — Vi (M + WPon” + g6 = 0 (2.10)
—}anl’m- =+ (}" + 2P)p0n” -+ (}" + P«) Vagon' = 0
VnpDon (t 0) = qul (t 0)7 Don (t O) = Son (t)
(500 0 = 7oy S (buo (2 ) — 8.0, 1) T, (vr) )
)
Jon (tv °°) = Pon (tv °°) =0

where the prime denotes the derivative with respect to §. 1Its solution has the form

A
Ton (£ E) = 54, (t)( ) :-2;:1 Vo€ — i J—l2u ) exp (— v,t)

Pon (:8) = s () 755 VaE + 1) exp (— v,)

It is known that v, = 0. Consequently, the equality s$g5 () =0 should be satisfied
to satisfy the condition (2.8), which will enable the boundary value of the function g, (z, f)
to be found for z =20

b
£ (0,9 z'%swm("v Yrdr=g" (1)

0

Thereby the functions Qe and Q. are defined completely and turn out to be ex-
ponentially decreasing as § — oo.
The function Qo0 (r, §,¢) is a solution of the problem

LoQo® + 9°Q.8/08* =0
r=2>b, 9Q08/0r =0; § =0, Q8 = pyo (r, 1) — 4 (0, 2)

where the unknown function &, (0,t) occurs in the boundary condition. We cbtain by the method
of separation of variables

Q8= 3, don () oxb (— %8 Jy (1)
b
don () = a7y § G0 (2 1) — 040 0. 1) Ty (vwr) T dr
L
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Taking (2.8) into account we arrive at the equation dy, (£) = 0, which enables us to
determine the boundary value of the function «a,(z f) for z = 0:

b
2
% (0. =7z o, rdr =a ()
¢

The function @,8 is thereby defined completely and has, like @y and Qow, an expo-
nential estimate in the variable E. We note that the convergence of the series for v,
Quw, Q0 and the possibility of their double term-by-term differentiation follows from
requirements 1°--3°

We will seek the functions @Quw(r, &, ¢) and Quw (r,t ¢ for i>>1 again in the form

Qw= 2 Gin(t ) J (i), Q= § Pin{l 8} Ty (var)
n=¢ N=2f

and for ¢, Pin we obtain a problem analogous to (2.10) with non-zero right-hand sides in
the equations and inhomogeneous boundary conditions for & =0, By using (2.8) we here find
the boundary values for the functions g;(z,f) at z=0: g (0, = g° ().

For i>>1 the functions @,8 (r, ,¢) are determined in the same way as (0. We here
find the boundary values for a; (s t): a; (0,2) = o,° ().

The BF Q;*y (ry &, ?) ({ =0,1,...) serve to satisfy the boundary condition for z=g
jointly with the regular part of the asymptotic form. They are constructed in the same way
as Qu(r, & ?) and have an exponential estimate in the boundary layer variable §,. Here the
boundary values are determined for the functions g (2, 8) and a; (2 t) for z=a:g{a &) =
& (1), a; (e, 1) = a (1)

2.3. The functions g;(z,1). Ordinary differential equations of the type (2.5) were
obtained for g {2, #) in Sect.2.l, while the boundary values g (0,8} =g () and g, (a, ) =
g* (f) were determined in Sect.2.2 for the construction of the @-and @*-functions. There-
fore, the functions g; (2, ) are defined uniquely as the solution of equations of the type
(2.5) with the boundary conditions obtained.

Parabolic equations of the type (2.7) were obtained for the functions a; (2, f) in Sect.
2.1. Consequently, for a unique determination of «; it is still required to give an initial
condition in addition to the boundary values found in Sect.2.2. It will be found during the
construction of the II-,. P- and P*-functions.

2.4. The boundary layer in the neighbourhood of the initial time. The function Iy {r,
z, 1,8} serves to satisfy a given initial condition in combination with the regular part of
the asymptotic form. Moreover, the function Iy (r, z, 7, ¢) should be a BF in the variable 7, i.e.,

Iy (r, z,t,e) >0 as: t— o 2.11)
For Ilgw(r, 2,7v) and Ilgw (r, 2, 1) we obtain problems analogous to those examined in Sect.
2.1 for 7, and i, Consequently, Ilpw =0, Il,w = n, (3, v) is an arbitrary function of the variables
z and 1. We find analeogously ILv =0, Thw = n, (z,7) is an arbitrary function of z and 7.
For I8 (r, 2z, T) we have the problem

LI — ot Z8 P (2.12)

a1 1 20T
r=b, dl®/6r =0, 1 =0, 11,0 = 5, {r, 2) — @, (2, 0)

The second derivatives of the as yet unknown function m,(z, 1) is on the right-hand side
of the equation, while «,(z 0), the unknown initial value of the function «,(z t) is in the
initial condition. We find by separation of variables

0= Z byn (2} P (— v 2T Ty (vor) — f’.‘.“.g.i:_.‘l (2.13)
n=0
b
2 z, 0
bon (3) = Jararesy S (o (rs2) + ‘”P‘aié;‘—)' =y {3, O)) Jo {vpr) rdr
e

where v, are the roots of (2.9). Taking account of (2.11), we arrive at the equation by, (z) =
0. It yields a connection between the as yet unknown functions a,(z, f) and an, (z, t)/dz for
t=0 and t=0:

b
, 0 2
oty (2, 0) — 1% Eﬁéz_l:FSxo (ry 2y rdr==v,(2) (2.14)

¢
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Using (2.14), we determine by, (3) completely. But for the final determination of II,0
the function =, (2,7) must still be found.
For Il (r, z, ) we obtain the problem

(A4 20) (LIl — r ML) == (2.15)
—B E‘: ViBon (2) 6Xp (— v, 20) Ty (v,r), r=b, Ty =0

Its solution is

NI
My = 5 Z_OT,._ exp (— xv,*t) Jy (V1)

n=1
The function ILw(r, 2, T) is the solution of the problem
wLollyw = —(h -+ 2p)0%ny/02%; r = b, 8llw/dr = 0 (2.16)

We obtain an equation for g (3, T): 3°ny/922 = 0 from the condition for problem {2.16} to
be solvable, consequently ILw =1, {2, 1) is an arbitrary function of z and .

For ILw(r,3,1) for i3> 3 we obtain a problem of the type (2.15) which has a unique
solution.

For Ijw(r,3,7) and 1, 4,0 (r,2, 1) for i>3 we have problems analogous to (2.16) and
(2.12). The function ILw is determined, apart from the arbitrary function a; (2, 1), while
the unknown function 0m;, (2, 1)/0z will occur in the expression for TI; ,6. From the condition
for the problem for Il to be solvable we obtain an ordinary differential equation for
;e (3, %) ©of the form

P/t = 1, (2, 1) 247

where [;, (z,7) is a known function that has an exponential estimate in 7, while for II;_,0
we find a relationship of the type (2.14) between wai., {3, f) and dm;, (z, 1)/0z from condition
(2,11) for t=0 and v=0.

Therefore, the II-functions can be determined uniquely only after the functions =, (z, )
have been found. 8o far, differential equations of the type (2.17) have been found for them.
When constructing angular BF the 1y (z,T) will be determined completely.

2.5. Aangular boundary layer. The functions m;(z,1t). The functions Pw(r,§, 1,8} and
Pw(r,§ 7,¢) are to eliminate residuals introduced by the BF Hv(r,2,7,8) and HDw (r, 2, 7, &) in the
boundary conditionat z = 0:; the function P8 (r, &, 7, €} is to eliminate residuals introduced by BF
116 {r, 2,7, 8 in the boundary condition at z = 0 and by the BF @8 (r, §, t, &} in the initial condition
at t =0. Moreover, the P-functions shouldbe BF in the variables f and 7t, i.e., angular BF:

Py(rn8,7,e)>0 asi+1—+00 (2.18)

An analogous system is obtained for P*y(r, §,, T, ¢).

For Pw(r,§ ) and Pow(r, § 7) we have the same problem as in Sect.2.2 for Qu, Quw,
it is just necessary to replace the last boundary condition by Pguw = —n,(0,7v) and the
parameter t by 7. Solving this problem taking (2.18) into account, we obtain e (0,7) =0
and Pyw = Pow = 0.

In the same manner we find mng(a,)=0, Po*v(r, ., t)=P*w(r, k1) =0.

The equation @#n,/02* =0 was obtained in Sect.2.4 for @, (%, T). and now the boundary
conditions 7y (0, T)=m, (8, T) = 0 were determined for the construction of the angular BF.
The problem for =%, obviously has just the trivial solution fi,{z, 1) = Q.

The function Il =0 and TI® are thereby determined completely, where II,8 has an
exponential estimate in v (see (2.13)), and we find the initial value for the functions
o (3, 1) ag (2, 0) = v, (38) == ago (3) from (2.14).

Similarly

(2,7 =0, Po = Pw = Py*v = P *w =0, o (z, 0) = a,, (2)

For P8 ({r, & 1) we obtain the problem

2,
e

2N ] \
r=b 8 —0; =0, P=— Y bn(0)x

n=1

exp (— uvnzT) Jo (Vnr)

=0, Pf=— 3 Qyn (0) €XP (- v4E) Jo (vur)
n=1

By virtue of requirement 2° b, {0) = d,, (0), i.e., the conditions for matching the initial
and boundary value are satisfied for the function P.8.The solution of the problem is found
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by separation of variables and has an exponential estimate in the variables & and 7.

For Pw(r,§ ) and Paw(r,§, 1) for i»>2 we obtain a problem with non-zero right-hand
sides in the equations and inhomogeneous boundary conditions for = and {_>3, This
problem can also be solved by separation of variables. The boundary value is here determined
for =:;(z, %) for z=0. Similarly, we find Py*v(r, k,, 1), P;*w (r, §x, 1) and m; {a,7) for > 2
Then we solve the equation for =, (z,t) with the boundary conditions found and we thereby
determine ILiw and II8 completely, and we also find the initial value for the functions
a; (2, t): o, (3, 0) = a;, (2). Let us note that =n;, and therefore, alsc IIjw and II;6 have an
exponential estimate in the boundary layer variable T since they are solutions of (2.17) with
the boundary values found that have an exponential estimate in .

For P8 (r,E 1) for i>1 we obtain a problem with non-zero right-hand side in the
equations and inhomogeneous boundary condition for r=1¥4 for i>> 2, The boundary and
initial conditions are matched for {( =0 and 71 =0 by virtue of requirement 2°. The
solution of the problem can be found by separation of variables and has an exponential estimate
in the variables & and 7.

The functions P*0(r, &, T)(i=0,1,...) are constructed in an analogous way.

2.6. The functions o {z, t). Equations of the type {2.7) were obtained in Sect.2.l for
the functions @;(3,f} and initial and boundary values were obtained in Sects.2.2 and 2.5
for the construction of BF. It can be shown that they are matched by virtue of requirement
2°, i.e., ) (0) = ayo (O), @) (0)= a;y (a).

We will introduce still another condition.

4°, Let (2.7) with the additional conditions

®Xy (zv 0) = W%go (Z), Ly (ﬂs t) = “00 (t)n 22 (a¥ t) == aOa (t)
have a solution.
The functions «; {2, %) for i>1 are later determined successively as solutions of
linear equations of the type {2.7) with the additional conditions found above.
Thus, the method described enables us to determine terms of the expansion (2.1) to any
number n.

3. Fundamental result. The fundamental result can be formulated as follows. We let
Y, (r,z ¢, &) denote the n-th partial sum of series (2.1).

Theorem 1. Under conditions {° — 4°the function Y, ({r,z f, &) satisfies system (1.3) and
the additional conditions (1.4) to an accuracy O (e™).

The assertion of the theorem follows directly from the very method of constructing series
(2.1).

We note two essential statements associated with the asymptotic form constructed.

1) Finding terms of the asymptotic form (2.1) reduces to solving simpler problems than
the initial problem (1.3), {(1.4). The regular terms of the asymptotic form were determined
by using ordinary differential equations of the type (2.3), {(2.5) whose solutions are found
in an elementary way in explicit form, and parabolic equations of the type (2.7)., If the
thermal sources H depend linearly on the temperature, the solution of (2.7) is also found in
explicit form, Explicit representations in the form of series are found for the BF by separ-
ation of variables.

2} In practical computations the original system of eguations is replaced by a simpler
shortened system. Which terms of the equations can be discarded? At first glance, it can be
shown that the derivatives with respect to p can be neglected in the equations for the axial
displacement w and the temperature 8 for a slender rod with slight heat transfer on its side
surface and the following shortened equations (the one~dimensional model) can be considered

. ,
M+20) T8 4 1=0, D0 s 2y (3.1)

However, an asymptotic analysis shows that this is not so. The equations for the principal
terms of the asymptotic form #, = g,(2, {} and 8, = &, (2. 1) have the forms of (2.5) and (2.7},
i.e., differ from (3.1) by additional components showing the need to take account of the weak
heat transfer even in the zero approximation (the term —2b14xa, in (2.7))}, and small radial
displacements on the side surface (the texrms —25™ (A - p) (A -+ 2u)" dgy/dz in (2.5) and —~2b"nxey’
in (2.7)). Therefore, an asymptotic analysis affords the possibility of an exact answer to
the question of what one-dimensional model is correct.

4, Theorem of existence..lLet us put
e Y, (2 1 8) — (B9 (2, 4, 8) ~ V., (5,3, 1, &)
wEw—-Wo o nn e — e — W, (0,8 ehX
(@ — 2)/a+ (b (ry t, 8) — W, (v, a, 8, 8)) 2/0)
-=0-90,,(=21t¢8
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where ¥, . W, 6,, are partial sums of series (2.1) for v w,6, respectively. For
8- we obtain the problem
Ly~ = e3Ba6~/or -+ my (r, 3, ¢, &) (%.1)
Loy~ = e3pab~/az -+ my {r, 2, t, &)

Lyy~=h (O, r,%,t¢8), (nz)e6

¥, T,

(4.2)
re=b, =20, dw/dr=0 “.3)
z= 0, dw/or + edv-/oz = 0, w= =0 :

z =g, dw/or + edv/dz =0, w= =0

= b, 307/0r 4 A = 0 ("D 4.4)
3=0,0"=0@E"%);:=10,6 =0 {‘
=0, 6= 0 (£
@, 1,2 5 e) =~ IH (8, + 0, r 2, )~ Ly {y — y))

where m;(i=14,2) are known functions: m; = 0 (™% in G.

We note that the introduction of the functions v, w~, 8~ in exactly the same way as this
has been done would enable us to obtain homogeneous boundary conditions for v, w™.

One more condition is needed to prove the existence of a solution of problem (4.1)-~(4.4).

50' Let my (Oy 2, ti e) =0

The sufficient condition for 5° is satisfaction of the following equalities:

Fiug ©,2,=0 for i>n.

Let us consider the equation obtained from (4.2) if we replace the terms

Pua 300 =10,

{— Tc_:%- 6~ 4 M(r,z,¢, e)}

1 @ . dw™
{""‘T ar e - } by
where M is a certain known function. The existence and uniqueness of a solution can be proved
for this equation with the additional conditions (4.4) (see /6/). We expand this solution
in series G~ = E8p5dy (Var) Cos nha™lz
The summation here and below is over n and k between zero and infinity; the quantities
with subscript =k are functions of £ and ¢ and v, are the roots of {2.9). lLet us substitute

this series into (4.1). The solution of problem (4.1) and (4.3) is sought by separation of
variation v = Bopdy (Var) cos aka~lz
w™ = BwnpJy (Vor) sin nka~lz “.5)

We also expand the functions m,, my in series
my = Tmynkdy (Var) cos tka™'z, my = ZmgupSy (Vyr) sin nka~lz
We note that the series for m, converges uniformly in G by virtue of requirement 5°,
Substituting these representations into (4.1), we obtain a system of two algebraic
equations for each pair of coefficients wvar, wagx and by solving it we express vmx, wpmx in terms
of 0,5, Mg, Mmagx. The solution of (4.5) is thereby found. Now it can be seen that
1 @ . dw'— eifin |
—e T g () ety g = — A—i-ﬂZ}I. 8-+ Mirzte)
. vnmin,,+mka‘1m;ﬂk e
A+ 20) (7,7 ke — 2T
Consequently, as /6/ also, an estimate is obtained for ¢-
max6\9'|=0(e’“1)
Analogous estimates follow in an elementary way for v~ w~.
Therefore the following is proved.

M=

Theorem 2. If conditions {°—5°
and (1.4) has the solution y{(rz¢ e
¢ i.e.,

are satisfied, then for sufficiently small & problem (1.3)
for which the series (2.1) is asymptotic in the domain

maxg |y — ¥u|=0 (™)
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